Publications
- E. Fong, A. Yiu, “Asymptotics for parametric martingale posteriors,” arXiv:2410.17692. 2024.
- Y. McLatchie, E. Fong, D. T. Frazier, and J. Knoblauch, “Predictive performance of power posteriors,” arXiv:2408.08806. 2024.
- E. Fong, A. Yiu, “Bayesian Quantile Estimation and Regression with Martingale Posteriors,” arXiv:2406.03358. 2024.
- E. Dimitriou, E. Fong, K. Diaz-Ordaz, B. Lehmann, “Data Fusion for Heterogeneous Treatment Effect Estimation with Multi-Task Gaussian Processes,” arXiv:2405.20957. 2024.
- H. Lee, G. Nam, E. Fong, and J. Lee, “Enhancing Transfer Learning with Flexible Nonparametric Posterior Sampling,” 12th International Conference on Learning Representations (ICLR), 2024.
- A. Yiu, E. Fong, C. Holmes, and J. Rousseau, “Semiparametric posterior corrections,” arXiv:2306.06059. 2023.
- L. E. Dang, E. Fong, J. M. Tarp, K. K. B. Clemmensen, H. Ravn, K. Kvist, J. B. Buse, M. van der Laan, and M. Petersen, “A causal roadmap for hybrid randomized and real-world data designs: Case study of Semaglutide and cardiovascular outcomes,” arXiv:2305.07647. 2023.
- E. Fong, C. Holmes, and S. G. Walker, “Martingale posterior distributions,” Journal of the Royal Statistical Society: Series B (with discussion), 2023.
- S. Ghalebikesabi, C. Holmes, E. Fong, and B. Lehmann, “Quasi-Bayesian nonparametric density estimation via autoregressive predictive updates,” 39th Conference on Uncertainty in Artificial Intelligence (UAI), 2023. Spotlight.
- H. Lee, E. Yun, G. Nam, E. Fong, and J. Lee, “Martingale posterior neural processes,” 11th International Conference on Learning Representations (ICLR), 2023. Notable top 25%.
- A. Yiu, E. Fong, S. Walker, and C. Holmes, “Causal predictive inference and target trial emulation,” arXiv:2207.12479, 2022.
- Z. Tsangalidou, E. Fong, J. Sundgaard, T. Abrahamsen, and K. Kvist, “Multimodal deep transfer learning for the analysis of optical coherence tomography scans and retinal fundus photographs,” NeurIPS 2022 Workshop on Learning Meaningful Representations of Life, 2022.
- E. Fong, “The predictive view of Bayesian inference,” PhD thesis, University of Oxford, 2022.
- E. Fong and B. Lehmann, “A Predictive Approach to Bayesian Nonparametric Survival Analysis,” 25th International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.
- E. Fong and C. Holmes, “Conformal Bayesian Computation,” in Thirty-Fifth Conference on Neural Information Processing Systems (NeurIPS), 2021.
- E. Fong and C. Holmes, “On the marginal likelihood and cross-validation,” Biometrika, vol. 107, no. 2, pp. 489–496, 2020.
- E. Fong, S. Lyddon, and C. Holmes, “Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap,” in Proceedings of the 36th International Conference on Machine Learning (ICML), 2019. Oral (long).